- Published on
Replicate API + Next.js + Hono + React Query
- Authors
- Name
- Shelton Ma
If you’re interested in this blog, you can explore the project at unleash-ai.
1. Setup and Configuration
Create a Replicate Account
- Sign up for a Replicate account.
- Generate an API token from replicate.com/account/api-tokens.
2. Integration to Next.js
Install packages
npm install replicate
Set environment variables, Add the Replicate API token to your .env file
REPLICATE_API_TOKEN=
Create replicate client
// src/lib/replicate.ts import Replicate from "replicate"; export const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Create api
// src/app/api/[[...route]]/image.ts import { replicate } from "@/lib/replicate"; import { getAuth } from "@hono/clerk-auth"; import { zValidator } from "@hono/zod-validator"; import { Hono } from "hono"; import { z } from "zod"; const app = new Hono() .post( "/", zValidator( "json", z.object({ prompt: z.string(), aspectRatio: z.string(), outputFormat: z.string(), modelName: z .string() .optional() .default(process.env.REPLICATE_DEFAULT_MODEL_ID!), }) ), async (c) => { const auth = getAuth(c); if (!auth?.userId) { return c.json( { message: "Unauthorized", }, 401 ); } const { prompt, aspectRatio, outputFormat, modelName } = c.req.valid("json"); try { const options = { model: modelName, input: { prompt: prompt, aspect_ratio: aspectRatio, output_format: outputFormat, }, }; const prediction = await replicate.predictions.create(options); if (prediction?.error) { return c.json({ detail: prediction.error }, 500); } return c.json({ prediction }, 200); } catch (error) { return c.json({ message: "Internal server error", error: error }, 500); } } ) .get("/:id", zValidator("param", z.object({ id: z.string() })), async (c) => { const { id } = c.req.valid("param"); const prediction = await replicate.predictions.get(id); if (prediction?.error) { return c.json({ detail: prediction.error }, 500); } let imageUrl: string | null = null; // type Status = "starting" | "processing" | "succeeded" | "failed" | "canceled"; if (prediction?.status === "succeeded") { imageUrl = prediction.output[0]; } return c.json( { prediction_status: prediction?.status, imageUrl: imageUrl, }, 200 ); }); export default app;
Create React Query Mutations
useImageCreatePrediction
// src/features/image/api/use-image-create-prediction.tsx import { client } from "@/lib/hono"; import { useMutation } from "@tanstack/react-query"; import { InferRequestType, InferResponseType } from "hono"; import { toast } from "sonner"; export type ResponseType = InferResponseType< typeof client.api.image.$post, 200 >; type RequestType = InferRequestType<typeof client.api.image.$post>["json"]; export const useImageCreatePrediction = () => { const mutation = useMutation<ResponseType, Error, RequestType>({ mutationFn: async (json) => { const response = await client.api.image.$post({ json }); if (!response.ok) { throw new Error("Something went wrong"); } return await response.json(); }, onError: () => { toast.error("Failed to send message"); }, }); return mutation; };
useImageGetPrediction
// src/features/image/api/use-image-get-prediction.tsx import { client } from "@/lib/hono"; import { replicatePendingStatus } from "@/lib/replicate"; import { useQuery } from "@tanstack/react-query"; import { InferResponseType } from "hono"; export type ResponseType = InferResponseType< (typeof client.api.image)[":id"]["$get"], 200 >; const delay = (ms: number) => new Promise((resolve) => setTimeout(resolve, ms)); export const useImageGetPrediction = (id: string | null) => { const query = useQuery({ enabled: !!id, queryKey: ["image", { id }], queryFn: async () => { if (!id) return null; await delay(3000); const response = await client.api.image[":id"].$get({ param: { id }, }); if (!response.ok) { throw new Error("Failed to fetch project"); } return await response.json(); }, retry: (failureCount, error) => { if (error?.message === "Failed to fetch prediction") { return false; } return failureCount < 5; }, refetchInterval: (data) => { if (data.state.data?.prediction_status === "processing") { return 2000; } if (data.state.data?.prediction_status === "starting") { return 5000; } return false; }, }); const isPending = query.isFetching || (query.data?.prediction_status && replicatePendingStatus.includes(query.data.prediction_status)); return { ...query, isPending }; };
Use the Mutations in Page
// src/app/page.tsx ... const predictionIdRef = useRef<string | null>(null); const { mutate, isPending: isPendingCreatePrediction } = useImageCreatePrediction(); const { data: imageData, isLoading: isLoadingImage } = useImageGetPrediction( predictionIdRef.current ); const onSubmit = async (values: z.infer<typeof formSchema>) => { setImage(null); mutate( { prompt: values["prompt"], aspectRatio: values["aspectRatio"], outputFormat: values["outputFormat"], }, { onSuccess: (data: ResponseType) => { predictionIdRef.current = data.prediction.id; }, onError: () => { toast.error("Generate Image went wrong."); }, } ); }; ...
Configure image hosts
// next.config.ts const nextConfig: NextConfig = { images: { remotePatterns: [ { protocol: "https", hostname: "replicate.com", }, { protocol: "https", hostname: "replicate.delivery", }, ], }, };
3. Conclusion
- Using Hono API allows you to create versatile and reusable APIs that can serve multiple applications beyond your current project.
- Leveraging React Query’s refetchInterval feature enables you to efficiently poll the prediction status, ensuring seamless updates without manually triggering requests.
These tools, combined with the Replicate API, make it easier to integrate AI-powered features into your Next.js applications while maintaining a clean and modular architecture.